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"Almost" Mean-Field Ising Model: 
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We study the thermodynamic limit of the algebraic dynamics for an "almost" 
mean-field Ising model, which is a slight generalization of the Ising model in the 
mean-field approximation. We prove that there exists a family of ,,relevant" 
states on which the algebraic dynamics a t can be defined. This cd defines a group 
of automorphisms of the algebra obtained by completing the standard spin 
algebra with respect to the quasiuniform topology defined by our states. 
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1. I N T R O D U C T I O N  

In  recent years great effort has been made to include in the algebraic 
formulat ion of quan tum systems introduced by Haag  and Kastler (1) a 
larger and larger number  of models describing physical phenomena.  

However ,  several models have been shown not  to fit into this algebraic 
setup. 

This is the case of long-ranged spin systems: for them, in fact, 
Robinson 's  constraint  on  the potential  is not  satisfied and therefore the 
dynamics  cannot  be defined as a no rm limit of the infrared cutoff dynamics 
~v .(2) With regard to cont inuous systems, even if no rigorous result exists 
on the subject, it is quite clear that  for long-range interactions (LRI)  the 
time evolution of a local variable involves sequences of delocalized 
operators  whose norm-convergence  for V ~  oe cannot  be stated in general 
(see ref. 3 for concrete models, providing counterexamples).  

There are two possible ways, not  mutual ly  exclusive, to approach  the 
problem. 
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On one hand, one can select a certain family of "relevant states" where 
the dynamics can be defined (this is the typical approach proposed by 
Dubin and Sewell ~4] and further developed by several authors. See, for 
instance, ref. 5 and references therein). 

On the other hand, one can try to "enlarge" the algebraic setup, to 
allow also unbounded observables (or even more general objects) to be 
included therein. 

In this spirit several algebraic structures have been introduced and 
extensively studied in recent years (mostly from the mathematical point of 
view): *-algebras of unbounded operators, in brief O*-algebras (see ref. 6 
for an overview), quasi- *-algebras, (7'8) partial *-algebras, (9] and CQ*- 
algebras. (10) 

In particular, the problem of performing rigorosly the thermodynamic 
limit of some local observables was the starting point for the introduction 
of quasi *-algebras (see discussion in ref. 7): the basic idea was, in fact, to 
complete the algebra of local observables in a suitably chosen topology so 
as to include thermodynamic limits (the completion of a locally convex 
*-algebra provides, in fact, the most typical instance of a quasi-*-algebra). 

In ref. 7 this formalism has been applied to the spin model describing 
the BCS model of superconductivity in Anderson's language. However, in 
our opinion, the use of this framework seems not to be essential for mean- 
field spin models, even though it allows one to recover a purely algebraic 
solution for the removal of the infrared cutoff in the equation of motion. 

This aspect has been discussed by Bagarello and Morchio, (12) where 
the same algebraic results as in ref. 7 are obtained without making use of 
O*-algebras. This is essentially due to the fact that all variables appearing 
in the equation of motion are uniformly bounded with respect to the 
volume V. This can be seen by considering llavJI with 

V l i 
r = ~  Z a~, e = 1 , 2 , 3  (1.1) 

i ~ V  

(Of course ~r v is the relevant variable in performing the infinite-volume 
limit.) 

In this paper we will discuss the spin model described by the finite- 
volume Hamiltonian 

J (1.2) ~3a3i J = J l V [ l  ~o.3vz o" 3 
H v - [  V[~ U~v i~v 

with 0 < 7  ~< 1, where the sum is extended to all the lattice sites in the 
volume V. This is, for 7 = 1, a typical mean-field Ising model that can be 
studied using the same techniques as ref. 11. 
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There a method to perform the infinite-volume limit of the algebraic 
dynamics ~'v has been introduced. The basic idea is to exploit the analytical 
dependence of ev  on a v. This allows the infinite-volume limit to pass 

v The fact ' in terms of t, ~ ,  a~. through the analytical function defining ~v 
that this function does not depend explicitly on V makes it easy to perform 
the limit, which exists in the ultrastrong sense with respect to a family of 
"relevant" states. 

These analyticity techniques seem not to be immediately adaptable to 
the model described by (1.2), due to the nonuniform boundness of the 
V-dependent operators appearing in the equation of motion. 

Of course, since the model is highly long-ranged, we have little chance 
of finding results about the existence of the thermodynamic limit of r 
without making reference to a family of states. This corresponds to the 
physical fact that not all states are "relevant" in the sense of ref. 4, i.e., 

! the infinite-volume limit of ~v cannot be performed on all the states over 
the standard spin algebra A s . In particular, for mean-field spin models 
such states need to be regular enough to ensure the convergence of ~ v in the 
ultrastrong topology induced by them. This is, in other words, a condition 
of sufficient regularity of the states at large distances; see ref. 11. 

With regard to the physical relevance of our model, we recall that 
Hamiltonians depending on V -~/2 have been studied in ref. 12. 

2. I N T R O D U C T I O N  TO THE M O D E L  

The finite-volume Hamiltonian H v which describes our model is 

J 
= ' (2.1) By  [VI~ • (7~(TJ3=JIVI 1 '(7; ~ (7 3 

ijE V i~  V 

The Heisenberg equations of motion are given by 

d t k 
~- t~v( (7~ , )=i[Hv ,  ' k :~= 1, 2, 3 

which gives 

d , k _ 2 _ ] _ _  J ~ i 
d-t ~ v(a=) = I VI~ ~ 3 ~ , = ,  I-a 3, c(~((7~)q 

= - 2 J I  VI 1 ~3~B{(Tg, ~'~((7~)} (2.2) 

It is clear that the dependence of the rhs on its variables is analytical 
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entire. We can solve the above equation, using the algebra of the Pauli 
matrices. The solution is, for c~ -- 1, 2, 3, 

t ~ k e x p ( _ i H v t  ) c~ v(e~) = exp( iHvt  ) a ~ 

k c0s2($3 v) _ 2e3~,a~ sin(S3 v) cos(S v) =O'c~ 

k ~ k sin2(S3 v) + 0(I VI 7) (2.3) ~- 0"30"0" 3 

where the following quantities have been defined: 

J i = 2 J t [ V I l - ~ a  v (2.4) SV= 2 ~ -~  t E i f3  

i ~ V  

and 

av  1 
3 = N E (2.5) 

i ~ V  

We claim that terms of the IV[ -7 order will not play any role in the 
convergence discussion since they are norm converging to zero. Therefore 
we will neglect such corrections in the following. 

The problem we consider whether the infinite-volume limit of e'~ makes 
sense under appropriate conditions. 

The relevant points are the following: 

1. First of all we see explicitly from Eqs. (2.4) and (2.5) that there is 
no uniform boundedness with respect to V for the variable SV; therefore 
the framework discussed in ref. 7 seems to assume a crucial relevance. 

2. The alternative method developed in ref. 11 cannot be applied 
any longer. In fact, Eqs. (2.2) and (2.3) explicitly depend on the volume V; 
whose (1 - 7 ) t h  power enters in the equation of motion; therefore the con- 
dition of having a small V dependence in the rhs of the equation of motion 
is of course not satisfied. This means that the dependence on V cannot be 
handled as a small perturbation going to zero uniformly. 

3. The third point is related to refs. 5 and 7, which clearly show that 
the current way of studying the thermodynamic limit of e t  for systems with 
LRI is to select a family of states. We will show in the next section that the 
"relevant" states for our Ising model are the antiferromagnetic states in the 
z direction, or local modifications of such states. 

We now state the general result without going into the details, which 
will all be discussed in the next section: 

It is possible to introduce a family F of states which define, via the 
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GNS construction, representations in which the infinite, volume limit of ~v 
exists in an appropriate topology to. This limit is a group of one-parameter 
automorphisms of the completion A=As(~o )  of the standard spin 
C*-algebra. 

3. M A T H E M A T I C A L  PROOFS A N D  DETAILS 

3.1. Notat ions and Basic Def ini t ions 

Let D be a pre-Hilbert space; by L+(D) we will denote the *-algebra 
of all closable operators A defined on D such that AD ~ D, A*D c_ D. 

Following ref. 6, we refer to any *-subalgebra of L+(D) as an 
O*-algebra. 

Let M be a self-adjoint operator in Hilbert space H;  then D =  
D~ = Ok,l D(Mk) is the natural domain for the polynomial algebra 
generated by M. This kind of domain occurs very frequently in applica- 
tions. The space D~(M) is a reflexive Fr~chet domain with respect to the 
topology defined by the seminorms 

feO~llflln=lIMnfll, n~N (3.1) 

The space L+(D), for D=D~(M), can be made a locally convex 
*-algebra if we define a topology v by the set of seminorms 

AeL+(D)~ IIAIl~k=max{llMkAf(M)ll, I[f(M)AMkll} (3.2) 

where f runs over the set C of all continuous, bounded, nonnegative 
functions on (0, oe) decreasing faster than any inverse power and ]I'll 
denotes the usual C*-norm of bounded operators in H. 

The *-algebra L + (D) is complete under the topology v, which is often 
referred to as the "quasi-uniform topology. ''(7) 

Now let A be an (abstract)*-algebra and J a set of indices. For  ieJ, 
let rc i be a faithful *-representation of A on Di, dense domain of the Hilbert 
space Hi; i.e., 7c i is a *-homomorphism of A into L+(Di). 

Let us assume that D i =  D~ for some self-adjoint operator Mi in 
Hi. We denote by ri the corresponding topology on L+(Di) defined by 
(3.2). 

'Then by A we can define a topology 40, called a "physical topology" 
by Lassner, ~v) in the following way: by means of ~zz, A is identified with on 
O*-algebra, ~i(A), on D~; then we can consider on A the topology, which 
we still call % induced by the vi of L+(Di): 

ILAII~ k=  II~,(A)II i'~ (3.3) 

The topology 4o is, then, the supremum of the vi. 
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In ref. 7 it has been shown that A[~0] is a locally convex *-algebra 
whose completion Algol  is still an algebra. This is a nontrivial result which 
depends on the facts (a) that A is naturally embedded in each L+(D~) and 
(b) each L+(Di) can be considered as an O*-algebra on the space 

OJ= 2 ~Di (3.4)  
iEJ 

In fact, each element (Ai) of HiL+(Di)  acts as an operator on D s. 
Of course the family {~} of representations, defining the topology ~o, 

can be built up starting from a family co/ of faithful states on A, via the 
well-known GNS construction for arbitrary *-algebras. (6) 

This is just what we will do in the next section: from a family {I {n} )} 
of states, we will define a *-representation ~ , /  on certain spaces D(n} of 
the form D(n ) = D~(M~n)), of the local *-algebra of spin operator A s and 
we will define the topology ~o as described above. The completion of the 
union of all these algebras will play for us the role of our observable 
algebra. 

3.2. General Theorems and Def ini t ions 

Throughout  this section we will adopt the same notations as in ref. 7 
and 13. 

Let H ~  = @p C a be the infinite tensor product of the 2-dimensional 
spaces C2; see ref. 14. 

We call In) the unit vector in C 2, which is characterized by the condi- 
tion ( ~ n ) l n ) =  In). This determines In) up to a phase factor. The scalar 
product of two such vectors is given by 

(n[  n ' )  = ei*[�89 + n.  n')] 1/2 

Let {n} = {nl, n 2 . . . .  ); then 

l { n } )  = @ lnp) (3.5) 
P 

denote unit vectors in H ~ .  Further let H(,~ be the separable Hilbert space 
generated by all vectors I{n '})  which are equivalent to I{n} ) in the sense 
of ref. 13. One can choose a special basis in H(n), which one gets from 
I{n}) by flipping a finite number of spins. For  this one chooses two three- 
vectors n 1, n 2, which together with n form an orthonormal basis and put 
n + = 1/2(n 1+n2). Then (~n +) In) = 0  and if we set Im, n )  = (~n-)mln) ,  
then 

(~. n)lm, n )  = ( -  1)m]m, n) ,  m = 0 ,  1 (3.6) 
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Now I{m}, {n}> = @p Imp, np>, mp=O, 1, Z mp< 0% form a coun- 
table orthonormal basis in H{n}. In this space we define the unbounded 
self-adjoint operator M (see ref. 7), by 

Ml(m},{n))=(l+2mp)l{m),{n))  (3.7) 
P 

The operator M -  1 counts the number of flipped spins with respect to 
the "ground" state I(0}, {n} ). 

Of course M=M~.~ depends on {n}, but we will drop this 
dependence whenever it is clear from the context in what space it acts. 

Now let 

(i) F~n~ = NkD(Mk) 

(ii) z~n ~ be the quasiuniform topology on L+(D{,,~) 
(iii) 7r~n}: A s ~ L+(D{.}) be the natural realization (representation) 

of As on D~n~ defined by 

Tc{n}(ap)[{m}, {n})=aPlmp, np)(~(p,l-JpQlmp,np,)) (3.8) 

These representations are faithful since As is a simple C*-algebra. 
We choose a fixed ordering of the lattice points p, and therefore 

denote them simply by natural numbers p = 1, 2, 3 ..... 
We define a set F of vectors which generalizes the family S defined in 

ref. 7 and allows one even to extend the "relevant states" introduced in 
ref. 11: 

{ } F =  (n,}: lim 1 ~ np=~n,  In/=l, 0~<~<l, np--(0,0, +1)  (3.9) 
V ~ eo i - ~  p = l 

where we have also n =  (0, 0, _+ 1) and ~/n represents the "almost" mean 
value of the sequence {np}. 

We see that for 7 = 1 this family almost coincides with the ones intro- 
duced in the quoted papers. The physical interpretation of (3.9) is essen- 
tially the following: the F-states are the usual up-down states typical of 
antiferromagnetic matter, or their local modification pointing in the z 
direction. This is of course in essential agreement with our physical picture 
of an antiferromagnet. 

The topology 3o we will use is defined starting from the z~n) through 
the system of seminorms: 

HAll~,ki=max{llM~ni~z{~}(A)f(M~n})]], IIU(M{~I)~}(A)Mk{,}I]} (3.10) 

where f e  C, k = 0 ,  1,2 ..... and {n} eF. 
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We observed that the M operator can be represented by a-matrices, 
i.e., 

M =  1 + �89 [ 1 - ( ~ o ' n p ) ]  (3.11) 
p 

where {no} e F and the series on the rhs converges strongly because it is the 
supremum of an increasing net of positive operators. 

We are now ready to prove the following result. 

I . e mma  1. The quantity S v defined in Eq. (2.4) has a limit $3 in the 
r defined by the seminorms (3.10). This limit is defined in the 
completion A = Asia0] ,  which is a topological *-algebra. Moreover, even 
(s3V) n converges in the same topology to ($3) n, u = 0, 1,.... 

Proof. In order to prove the first part of the lemma, it is sufficient to 
prove that S v converges with respect to every seminorm IIAII f'k in every 
space D{,}, {n} eF. [We write here and in the following for simplicity 
M =  M{n}, A = zt(,}(A).] To further simplify the notation, we will consider 
only the first contribution in (3.2), so that llAll y'k will be essentially 
identified with the single IIMkAf(M)II. This is allowed by the fact that 
IIf(M) AMkll = IIM~A*f(M)II, for f real, so that its estimate for A* is the 
same as IIMkAf(M)I]. 

Let 

M =  ~ mP m (3.12) 
m = l  

be the spectral decomposition of M. Then we can write (7) 

]1A ]I f,k = ~ l k I1A 11 tm f(rn) 
/in 

where 

IIA Itl,,.--IIPtAPmH 

From its definition it is easy to see that we can write 

d i vl 
s V = 2 t = (0 ,  0 ,  

p = l  

where n o = (0, 0, + 1 ). 
Threfore the action of S v on the vectors of D~n}, I{m), {n}), can be 

determined using Eq. (3.6). We get 

j I vl 
SVl{m}, ( n } ) = 2 ~ t  ~ np(-1)mpl{m}, {n}) (3.16) 

p = l  

(3.13) 

(3.14) 

(3.15) 
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Taking into account that the Hilbert space H{m} is such that 
1 + Y~ m p  = m, we get 

II SV - 2Jtqn3 II l,m ~ aim sup 
[{mp}:l +5~ mp=m] 

<<-~,m'2Jt'{ i ~ t  'v. 
p = l  

and there, recalling (3.13), 

]2Jtl ~ n f ( -  1)m'-- t/n3 
p = l  

p " 2m ] 
H3 --t'IH 3 -I-~(7~ (3.17) 

~ 7  Ivl m ~ 
llSS-2Jttln311f'k<~ 12Jtt 1 ~ n;-qn3 mkf(m) 

p = l  

]4Jt] ~, 
+ ]VlV ~mk+lf (m)  --+0 (3.18) 

for V--+ oo. 
In (3.18) we have used the fact that the function f is in the class C and 

therefore the sum in the above inequality is finite. In (3.17) estimates like 
the following have been used: 

1 

p = l  

1 1 . m - - I  m 
= ~g-~7 ( - - H 3  . . . .  H 3 -{-H 3 -t- - . - - - { - H I 3 v l ) - - ~ n 3  

1 I gl 2m 
+ - -  

p=l  IVI 

(This is the particular case where ml=m 2 . . . . .  m m 1=1,  
mm= mm+1 . . . . .  0, but it also can be adapted to any other sequence 
{rap} such that 1 +Y, mp=m.)  

The algebraic nature of A has been discussed in Section 3.1. We have 
only to prove now that also the powers of S~ are convergent. We note that 
for any integer n the following inequality holds: 

II (SV)" - (2Jtt#n3)" II ,,m 

= 5 " ( ; )  (SV-2Jttln3)k(2Jttln3)"e 
= 1 I,m 

<~ ~. (;)(S~-2Jttln3H,,m) k 12Jt~/I n-k {3.19) 
k = l  
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and therefore an est imate like the one in (3.18) holds, so that  Ir(SV) " -  
( 2 J t q n 3 ) ' J  'k --+ 0 for V going to inifinity. 

In  deriving this result, we took  into account  that, despite the fact that  
II'' 'llt, m is not  a Banach  norm,  the equality II(..-)~llt, m=(l l- . . l l t ,~)  k holds 
since S v -  2Jt~ln3 commutes  with M and therefore with its spectral  projec- 
tions. 

Finally we notice that  [$3,  ai~] = 0, Ve, i. 
The above  result allows us to prove  the following: 

P r o p o s i t i o n  2. The finite-volume dynamics  ~v converges in the 
topo logy  ~o, uniformly for t running in a compac t  set, to an a u t o m o r p h i s m  
e '  of the suba lgebra  of A, A a, generated by As and by the cont inuous  
functions of  $3. 

Proof. We use the explicit solution of the equat ion of mot ion,  
formula  (2.3), in order  to est imate the following quanti ty:  

t i t i f , k  i 2 V II~v(~=)-~,(~=)ll ~ II~[cos (ts~)-cos=(ts~')] I'~ 

+ He3~a~[sin(2ts v) - sin(2tsV')]  ]1F,k 

i i i  " 2  V _sin2(ts~,)]Hf, k -1- HO'30" o-3[sln (ts 3) 

where s v = SV/t = 2JI  r l  a ' a  v. 
We put  n o w s V ' = s V +  , v  A V = V '  s 3 , - V, and observe that, since s v 

converges in the II..-II y'k norm,  Ils~Vlls'k<e for V and V' big enough. 
Moreover ,  f rom ref. 7 we have 

which allows one to derive the following inequality: 

t i t i f , k  IF7 v ( a ~ ) -  ct v,(a~)l/ ~< 2(c~, + c~B)l[ sin(ts~V)ll f'~ 

Taking  now into account  that,  if A ~< B and if [A, M ]  = I-B, M ]  = 0, 
then IlAllf'k ~< [IBI] y'~ and that  sin(A)~<A, we can conclude that  

t i t i f , k  
It~ v ( ~ )  - ~< + %)11 0 =v,(G=)ll 2t(c~ s~Vllf'k ~ 

for V, V' ~ o% and uniformly for t running in a compac t  set. 
Finally, due to the completeness  of A in the ~0-topology we conclude 

that  there exists ' i (a~)eA such that  t i , i (a  s) = ~o-lim v ~ o~ ~ v(~r~) �9 Actually it 
is easy to deduce f rom Eq. (2.3) that  ' (a~) belongs to A G, and that  cd 
maps  A G into itself since ~ ' ( s 3 ) =  s3. The  a u t o m o r p h i s m  nature  of a t follows 
f rom the fact that  l i ly(A) ~ v ( B ) -  ~ ' (A)  ~t(B)I[Y'~ can be es t imated to go to 
zero for V ~ ~ with similar techniques as before. 
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We have just proved that the algebraic dynamics can be defined with 
a limiting procedure. Now we are interested in finding the equation of 
motion satisfied by c& This is the main content of Proposition 3. The same 
proposition allows us to prove the group nature of cd, but not to extend the 
dynamics to the whole algebra A. This will be achieved in Corollary 4 by 
introducing a self-adjoint operator Haf which gives the right time evolution 
of any observables. 

P r o p o s i t i o n  3. The algebraic dynamics cd defined in Proposition 2 
satisfies the infinite-volume limit of the equation of motion (2.2) and is a 
group of automorphisms of A G. 

ProoL Equation (2.2) can be written in the form 

d t k t k - = F (~  ~(G~), S ~ )  dt ~ v(a~) 

where F is a polynomial in its variables. 
We want to perform the 4o-limit for V--* oo of the above equation. 
First, we observe that the finite-volume solution of the equation 

F(c~ v(a~), S v) of motion (2.2), Eq. (2.3), can be inserted in the function ' 
defining in this way a new function F # :  

F # ( t , a ~ , s  v )= , k r(~ v(~), S~) 

which puts in evidence the time dependence of the function F # .  Therefore 
the finite-volume equation of motion above can be rewritten in the more 
convenient form 

d t k # ~C~v(a~)=r  (t, a~, s v) (3.20) 

Using the same kind of estimate as in Proposition 2, we can prove that F # 
is 4o-Continuous with respect to its variables and therefore 

k sV)=F#( t ,  k 4o- lim F#(t ,  a~, a~, 40- lim s v) 

k $3 ) =F#( t ,  a~, 

where obviously s3 = S3/t. 
For the same reason F # satisfies the Lipschitz condit ion in t (which 

is the relevant variable for our purpose). This means that 

k s V ) _ F # ( s ,  k ]IF # (t, a~, a~, sV)]] f'k ~ M I t -  s] 

where M is the Lipschitz constant. 
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We will use the previous estimate to prove the existence of the infinite- 
volume limit of  the lhs of (3.20). First of all we notice that  the time 
derivative in (3.20) is defined in a natural  way as 

d ~ k . 1 
__ C~v(a~) = ~o_llm _ ,+~ k t k - :r (3.21) [~v (~ )  
dt ~ o  e 

We will prove that  

~o_lim 1 ,+~ k t k - [ ~  (G)-a~(z~)] 
~ 0  

is uniform in V, so that  the following result holds: 

~ o - l i m  d , k d d ~ k 

interchanging the infinite-volume limit with the time derivative. 
The final result is therefore that  the infrared cutoff in Eq. (3.20) can be 

removed and the following differential equat ion is obtained: 

d t k 
~t ct (a=)=F#(t ,  O-ak, $3 )  (3.22) 

The proof  of the uniformity is simple but a little bit long. We only give 
the essential steps. We have to s tudy the following quanti ty:  

1 t + ~  k t k 1 f,k 
- [ ~ v  (a~) - [~v ( G ) - ~ A G ) ]  

- ~ d ~ ) ]  - ' * ~ '  ~ ' 
/3 8 r 

We first write Eq. (3.20) in integral form: 

c k , k ftr =~v(G)+  G, ~v(CG) F#(s, k sV) ds, V t '> t  

We can now substitute this equat ion for t ' =  t + e and for t ' =  t + e' in 
the II'"II f'~ above. Fur ther  we define a function G by 

k S v ) = r  #(s, k v # k S v) G(t,s;a~, a ~ , s 3 ) - - F  (t,a~, 

s v) in the integrals defining c k and substitute F#(s,  r G, ev(a~). Of course 
k S v) is constant  in s and we can integrate it. Using the Lipschitz F#(t ,  a~, 

condition, we get after a little computa t ion  

1 t + ~  k t k 1 . . . .  [ ~  (a~)- ~v(G,)] ~ T  (/3+ ~') [ ~ v  (a~) ~v (a~ ) ]  ,+~' k , k Ak M 
/3 /3' 



"Almost" Mean Field Ising Model 481 

which shows the uniformity in the volume of 

~o-lim 1 ~+~ k , k - 

e ~ 0  g 

and allows us to conclude. 
With regard to the group property, we start by observing that cd(a~) 

can be written in the form 
�9 

= exp(tts3 a 3) a S exp( - its3 ak3) 

This implies that ' + ~" k, t ~ k to-~)=~ [c~ (a~)]. Moreover, due to the 
t ~ t = ~ (o-~) cd(a~), one can extend the automorphism property of cd, e (a~a~) ~ k 

group property to the whole A G. 
Finally, we prove the following results. 

C o r o l l a r y 4 .  The time evolution et can be extended to an 
automorphisms (denoted by the same symbol) of the whole algebra A and 
it is a group of automorphisms of A. 

ProoL We only need to prove that cd is continuous from As[~o]  into 
A[~o],  so that it can be extended to the whole A[~o].  

The proof makes use of the possibility, extensively discussed in refs. 13 
and 15, of introducing an effective Hamiltonian H~fr giving rise to the same 
equation of motion obtained from Eq. (2.3) after taking the thermo- 
dynamic limit. It is easy to see that such an effective Hamiltonian is 

Heft= 2Jqn3 ~, IrOn(O'S)--n p ] 
p 

where n3 is the z component  of the n-vector defining the family F and the 
summation is extended to the whole lattice. In fact, minor manipulations 
show that 

t k v(a ~) = exp ( iHv t )  cr~ exp( - iHv t )  

defined in (2.3) converges in the topology 4o to 

~'( ~ )  = exp( iHefrt ) ~ exp( - iH~fft ) 

analogous to what is required in ref. 13 for the BCS model. He~ turns out 
to be a well-defined self-adjoint operator in each representation space H(,}.  
Therefore we have 

He'(A)l] f'k = llM k exp(iHeut ) A exp(--iH~fft) f (M)t l  

= ]lexp(igef~t) M k A f ( M )  e x p ( -  ig~ t )H 

= [[MkAf(M)[[ =[[AII I,k 
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since M and  Heff commute.  This proves the cont inui ty  of c~ t and therefore 

the corollary. 
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